使用AFM原子力显微镜观察生化过程

 新闻资讯     |      2023-12-19 10:19:57

随着样品处理技术在液体中成像技术的改善,应用AFM原子力显微镜观察复杂的生化过程成为可能。转录过程是基因表达的中心环节,而使用原子力显微镜(AFM)观察蛋白质和DNA的相互作用存在一个矛盾要解决:生物分子需要固定到基底上是原子力显微镜(AFM)的成像基础,而生化反应过程却需要生物分子能相对自由地移动。即使在大量非特异性DNA存在时,RNA聚合酶(RNAP)与启动子间仍存在很高的结合率,人们猜想RNAP沿着DNA的扩散是其原因之一。非特异性复合物在适当条件下沉积后,利用原子力显微镜(AFM)可观察到RNAP沿着DNA滑动,且能在不同的DNA片段间转移。然而加入肝素可终止这些过程,这就进一步证实了RNAP- DNA相互作用的非特异性。原子力显微镜(AFM)还能对转录的过程进行实时观察,在加入核苷酸后,沉积到云母上的延长复合物沿着DNA模板单向移动。两个对照实验证实RNAP与DNA的相对移动与转录的实际情况相符。在一个对照中,以没有终止子的微环DNA作为模板,在云母上进行转录。在干燥后通过原子力显微镜(AFM)可观察到合成的RNA长链。在D二个对照中,DNA在相同的条件下,在云母上进行转录。不同的是加入的核苷酸用32P标记。通过PAGE对反应产物进行分析,结果显示与云母结合的复合物具有活性,而且转录的速度与用原子力显微镜(AFM)测得的近似生物分子的构象改变也是原子力显微镜(AFM)的重要观察内容。将尿素酶沉积到云母上并用原子力显微镜(AFM)扫描,在液池中加入尿素后发现,悬臂的垂直波动明显增加,这提示由酶活动引起的构象改变能直接通过原子力显微镜(AFM)记录下来。格兰阴性菌的外膜是其保护屏障,它由规则组装的蛋白质通道构成。其中研究较多的是Deinococcusradiodurans的六角形组装中间体(hexago nallypacked intermediate, HPI)蛋白。HPI被认为与营养的摄入和代谢物的排出有关。HPI的原子力显微镜(AFM)图像显示了规则的六角形及中央的孔样结构。在液体中成像则发现HPI呈现出“开和“关”两种不同的构象。意义虽不清,但这却显示出原子力显微镜(AFM)在液体中成像的优势。

原子力显微镜.jpg

原子力显微镜(AFM)在研究分子识别中的应用分子间的相互作用在生物学领域中相当普遍,例如受体和配体的结合,抗原和抗体的结合,信息传递分子间的结合等,是生物体中信息传递的基础。原子力显微镜(AFM)可作为一种力传感器来研究分子间的相互作用。这是由于原子力显微镜(AFM)理论上能感应10-14N的作用力,能感应0.01nm的位移,而接触面积可小到10nm2。因此,原子力显微镜(AFM)被用于研究互补的DNA链间、细胞粘附分子间及配体-受体间的相互作用力。生物素(biotin)和抗生物素蛋白链菌素(streptavidin)间有高亲和力,其相互作用的热力学数据也较为清楚。因而,生物素和抗生物素蛋白链菌素是原子力显微镜(AFM)测定特异相互作用力的良好典型。在一经典实验中,用生物素化的小牛血清白蛋白(biotinlated bovine serum albumin,BBSA)包裹微球,而微球连在悬臂上形成BBSA功能化探针。然后在有生物素阻断和无生物素阻断的抗生物素蛋白链菌素溶液中测量BBSA功能化探针和BBSA包裹云母间的粘附力。结果显示,无生物素阻断的抗生物素蛋白链菌素溶液中需要较大的力才能将BBSA功能化探针与云母表面分离,力的大小为(0.257±0.025)nN,与分离配体-受体所需的力相符。而在此基础上可推算出其有效的断裂距离为(0.95±0.10)nm。因此,当针尖包裹了特定的分子(如生物素)后,通过针尖和样品间的相互作用可用于辨认表面的相应分子(如抗生物素蛋白链菌素)的位置。现在已出现了商用的修饰探针,这些探针包裹了不同的分子,可用于不同用途的分子识别。因而原子力显微镜将发挥更广泛的作用。

原子力显微镜(AFM)在物质超微结构研究中的应用原子力显微镜(AFM)可以直接观察到表面缺陷、表面重构、表面吸附体的形态和位置、以及有表面吸附体引起的表面重构等。原子力显微镜(AFM)可以观察许多不同材料的原子级平坦结构,例如,可以用原子力显微镜(AFM)对DL-亮氨酸晶体进行研究,可观察到表面晶体分子的有序排列,其晶格间距与X射线衍射数据相符。另外原子力显微镜(AFM)还成功地用于观察吸附在基底上的有机分子和生物样品,如,三梨酸、DNA和蛋白质的表面。海藻酸聚赖氨酸海藻酸(Alginate Poly L-Lysine Alginate,简称APA)胶囊薄膜具有半渗透性,构成可以阻止人体免疫系统的成分进入由APA薄膜构成的胶囊,从而使得胶囊内的物质免受免疫系统的侵害。因此,可采用该薄膜胶囊保护人体内移植的组织,延长其在人体内的存活时间。同时,对药物具有缓释效应。APA薄膜的半渗透性同其表面的超微结构有着密切的联系,研究其表面的超微结构对其半渗透性的研究具有重要的意义。已有文献报道了关于采用原子力显微镜(AFM)对APA薄膜的表面结构进行研究的内容,发现了APA表面的特殊结构,从而揭示了APA表面超微结构对半渗透性的重要意义。目前,利用原子力显微镜(AFM)已获得了DNA、透析薄膜、烷烃分子、脂肪酸薄膜以及多糖等的超微结构的图象。