扫描电子显微镜是自20世纪60年代商用电镜推出以来迅速发展起来的一种新型电子光学仪器。广泛应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等研究领域和工业部门。如图1所示,它是扫描电子显微镜的外观图。
特点
样品简单,放大倍数可调范围宽,图像分辨率高,景深大,保真度高,三维效果真实。导电材料可直接放入样品室进行分析,导电性差或绝缘样品需喷涂导电层。
基本结构
从结构上看,如图2所示,扫描电镜主要由电子光学系统、信号检测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统和供电系统七个系统组成。
图2:扫描电子显微镜结构图(图片来源:西南石油大学能源材料实验教学中心)
*重要的三个系统是电子光学系统、信号检测和显示系统和真空系统。
1、电子光学系统
电子光学系统包括电子枪、电磁透镜、扫描线圈、样品室等,主要用于产生一束能量分布极窄、电子能量确定的电子束进行扫描。
电子枪:用于生产电子,主要分类如下:
种类
原理
优点
缺点
电子枪在现场发射
利用场发射效应产生电子电子
寿命至少1000小时,不需要电磁透镜系统
十万美元以上,需要小于10-10torr的极高真空
钨枪
利用热发射效应产生电子电子
价格便宜
寿命在30~100小时之间,成像不如其他两种明亮
六硼化兰/六硼化
电子枪和钨枪的使用寿命为200~1500小时,价格约为钨枪的十倍,图像比钨枪亮5~10倍,略高于钨枪的真空,一般在10-7torr以上
电磁透镜:热发射电子需要电磁透镜才能成束,所以电磁透镜对于热发射电子枪的扫描电镜至关重要。通常有两组:聚合镜和物镜,只用于聚合电子束,与成像聚焦无关;物镜负责将电子束的焦点聚集在样品表面。
扫描线圈的功能是使电子束偏转,并在样品表面进行定期扫描。电子束的扫描动作与显像管上的扫描动作保持严格同步,因为它们由相同的扫描发生器控制。
除样品外,样品室还安装了信号探测器。
2、信号探测处理和显示系统
经过一系列电磁透镜,电子与样品相互作用,产生二次电子、背散射电子、俄歇电子和X射线等一系列信号。因此,需要不同的探测器,如二次电子探测器X为了获得所需的信息,射线能谱分析仪等。X射线信号不能用于成像,但在习惯上,它仍然会X将射线分析系统划分为成像系统。
有些探测器很贵,比如Robinsons背散射电子探测器可以用二次电子探测器代替,但需要设置偏压电场来筛选二次电子。
3、真空系统
真空系统主要包括真空泵和真空柱。
真空柱是一个密封的柱形容器。真空泵用于在真空柱中产生真空。有三类:机械泵、油扩散泵和涡轮分子泵。机械泵加油扩散泵的组合可以满足配备钨灯丝枪的扫描电镜的真空要求,但机械泵和涡轮分子泵的组合需要安装现场发射枪或六硼化岚和六硼化铌枪的扫描电镜。成像系统和电子束系统内置在真空柱中。真空柱底部为右图所示的样品室,用于放置样品。
真空的原因包括:首先,电子束系统中的灯丝会在普通大气中快速氧化并失效,因此需要抽真空。第二,增加电子的平均自由度,使更多的电子用于成像。
基本结构
扫描电子显微镜是利用材料表面微区域的特征(如形状、原子序数、化学成分、或晶体结构等),在电子束的作用下,通过样品的不同区域产生不同的亮度差,从而获得具有一定衬里的图像。成像信号是二次电子、背散射电子或吸收电子,其中二次电子是*重要的成像信号[2]。图3为其成像原理图,高能电子束轰击样品表面,刺激样品表面的各种物理信号,然后使用不同的信号探测器将物理信号转换为图像信息。
图3:扫描电子显微镜成像原理图(图片来源:西南石油大学能源材料实验教学中心)
除了二次电子图像外,扫描电镜还可以检测背散射电子、透射电子和特征x射线、阴极发光等信号图像。其成像原理与二次电子图像相同。扫描电镜观察前,应相应处理样品。
样品要求
1、不会被电子束分解
2、在电子束扫描的热稳定性好
3、能提供导电和导热通道
4、大小与厚度要适于样品台的安装
5、观察面应清洁,无污染物
6、微区成分分析的表面应平整
7、磁试样应提前去磁,以免观察时电子束受磁场影响
45知识点扫盲
1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质。由于电子束波长期小于可见光,电子显微镜的分辨率远高于光学显微镜。光学显微镜的*大放大率只有1500倍左右,扫描显微镜可以放大到1万倍以上。
2. 根据de Broglie电子波长仅与加速电压有关:
λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (?)
在 10 KV 在加速电压下,电子波长仅为0.12?,远低于可见光的4000 - 7000,所以电子显微镜的分辨率自然远优于光学显微镜,但扫描电子显微镜的电子束直径大多在50-100?电子和原子核之间的弹性散射 (Elastic Scattering) 非弹性散射 (Inelastic Scattering) 的反应体积会比原来的电子束直径更大,所以一般穿透电子显微镜的分辨率比扫描电子显微镜高。
3. 扫描显微镜具有超大景深的重要特点(depth of field),它大约是光学显微镜的300倍,使扫描显微镜比光学显微镜更适合观察表面样品。
4. 扫描电子显微镜由上而下设计,由电子枪 (Electron Gun) 通过一组磁透镜聚焦 发射电子束(Condenser Lens) 聚焦后,用屏蔽孔径 (Condenser Aperture) 选择电子束的尺寸(Beam Size)之后,通过一组控制电子束的扫描线圈,然后通过物镜 (Objective Lens) 聚焦,打样品,在样品上方安装信号接收器,选择二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。
5. 电子枪的必要特点是亮度高,电子能量分布 (Energy Spread) 小,目前常用的计有三种,钨(W)灯丝,六硼化兰(LaB6)灯丝,场发射 (Field Emission),电子源大小、电流量、电流稳定性、电子源寿命等方面存在差异。
6. 热游离电子枪有钨(W)灯丝及六硼化(LaB6)灯丝有两种。它利用高温使电子有足够的能量来克服电子枪材料的功能函数(work function)逃离能量障碍。对发射电流密度有重大影响的变量是温度和功率函数。然而,由于电子枪的操作希望以*低温度操作,以减少材料的挥发性,因此在不提高操作温度的情况下,需要使用低功率函数材料来提高发射电流密度。
7. *便宜*常用的是钨灯丝,热游离 (Thermionization) 电子能量分布在 2eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V细线形状,操作温度约2700K,电流密度为1.75A/cm2,随着钨丝的蒸发,灯丝的直径变小,使用寿命约为40~80小时。
8. 六硼化镧(LaB6)灯丝的功能函数是2.4eV,它低于钨丝,因此使用相同的电流密度LaB6只要在1500K可以达到,亮度更高,所以使用寿命比钨丝高很多,电子能量分布在 1 eV,但是因为LaB6加热时活性强,必须在更好的真空环境下操作,因此仪器的采购成本较高。
9. 场发射电子枪的亮度分别高于钨灯丝和六硼化岚灯丝 10 - 100 倍,电子能量仅分布在 0.2 - 0.3 eV,因此,目前市场上销售的高分辨率扫描电子显微镜采用场发射电子枪,其分辨率可高达 1nm 以下。
10. 场发射电子枪可细分成三种:冷场发射式(cold field emission ,FE),热场发射式(ther ** l field emission ,TF),及萧基发射(Schottky emission ,SE)
11. 当在真空中的金属表面受到影响时108V/cm当大小电子加速电场时,会有大量的电子发射。这个过程叫做场发射。其原理是高电场会产生电子电位障碍 Schottky即使能障宽度变窄,高度变低,电子也可以直接工作"穿隧"通过这种狭窄的能障,离开阴极。场发射电子系统从非常尖锐的阴极**发射,因此可以得到一个非常薄和高电流密度的电子束,其亮度可以达到热游离电子枪的数百倍,甚至数千倍。
12. 场发射电子枪所选的阴极材料必须是高强度材料,以承受阴极**高电场加入的高机械应力,钨因高强度而成为更好的阴极材料。场发射枪通常产生吸收电子、聚焦和加速电子的功能。阳极特殊形状产生的静电场可以聚焦电子,因此不再需要韦氏盖或栅极。**(上)阳极主要是改变场发射的拔出电压(extraction voltage),为了控制针尖场发射的电流强度,第二(下)阳极主要决定加速电压,将电子加速到所需能量。
13. 要从极细的钨针**发射电子,金属表面必须完全清洁,其表面没有任何外部材料的原子或分子,即使只有一个外部原子落在表面,也会减少电子场发射,因此场发射电子枪必须保持超高的真空度,以防止钨阴极表面积累原子。由于超高真空设备的价格非常高,除非需要高分辨率SEM,否则,电子枪在现场发射较少。
14. 冷场发射*大的优点是电子束直径*小,亮度*高,因此图像分辨率*好。能量分布*小,因此可以提高低压操作的效果。为了避免针尖被外部气体吸附,降低场发射电流,使发射电流不稳定,必须使用冷场发射电子枪10-10 torr尽管如此,在真空度下操作仍需定期短时间加热针尖2500K(这个过程叫做flashing),去除吸附的气体原子。另一个缺点是发射总电流*小。
15. 热场发式电子枪1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing需求。热型能保持良好的发射电流稳定性,并能在较差的真空度下保持良好的发射电流稳定性(10-9 torr)操作。虽然亮度与冷式相似,但其电子能量分布大于冷式3~5倍,图像分辨率差,通常不常用。
16. 萧基发射运行温度为1800K,它系在钨(100)单晶上ZrO覆盖层,ZrO纯钨的将功函数4.5eV降至2.8eV,此外,高电场使电位障壁变窄变低,使电子很容易以热能的形式跳过能障(而不是隧道效应),逃离针尖表面,所需的真空度约为10-8~10-9torr。其发射电流稳定性好,发射总电流也较大。其电子能量分布很小,仅略低于冷发射电子枪。其电子源直径大于冷发射,因此图像分辨率略低于冷发射。
17. 场发射放大率为25倍至6.5万倍,使用加速电压15kV可以达到分辨率1nm,加速电压1kV可以达到分辨率2.2nm。一般来说,钨丝扫描电子显微镜仪器上的放大率可以达到2万倍。在实际操作中,大多数图像在2万倍时不清楚,但如果样品的表面形状和导电性合适,*大倍率 可以达到6.5万倍。
18. 由于对真空的要求较高,一些仪器在电子枪和磁透镜中配备了三组离子泵(ion pump),样品室配备2组扩散泵(diffusion pump),在体外,一组机械泵负责粗泵,因此有6组不同尺寸的真空泵来满足超高真空的要求。此外,样品中还有一个冷陷阱,用液氮冷却(cold trap),帮助保持样品室的真空。
19. 平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),抽真空时间会延长,降低仪器的便利性,增加仪器的购买成本。因此,一些仪器设计了阶段真空(step vacuum),即使电子枪、磁透镜和样品室的真空度依次降低,真空计读数也可以分为三部分读取,以保持样品在真空度10-5pa可在环境中操作。待机或更换样品时,真空阀用于防止电子枪污染(gun valve)电子枪和磁透镜的部分样品室隔离,实际观察时再打开使电子束通过而打击到样品。
20. 场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。
21. 在电子显微镜中须考虑到的像差(aberration)包括:衍射像差(diffraction aberration)、球面像差(spherical aberration)、散光像差(astig ** ti ** )及波长散布像差(即色散像差,chro ** tic aberration)。
22. 面像差为物镜中主要缺陷,不易校正,因偏离透镜光轴之电子束偏折较大,其成像点较沿轴电子束成像之高斯成像平面(Gauss i ** ge plane)距透镜为近。
23. 散光像差由透镜磁场不对称而来,使电子束在二互相垂直平面之聚焦落在不同点上。散光像差一般用散光像差补偿器(stig ** tor)产生与散光像差大小相同、方向相反的像差校正,目前电子显微镜其聚光镜及物镜各有一组散光像差补偿器。
24. 光圈衍射像差(Aperture diffraction):由于电子束通过小光圈电子束产生衍射现象,使用大光圈可以改善。
25. 色散像差(Chro ** tic aberration):因通过透镜电子束能量差异,使得电子束聚焦后并不在同一点上。
26. 电子束和样品作用体积(interaction volume),作用体积约有数个微米(μm)深,其深度大过宽度而形状类似梨子。此形状乃源于弹性和非弹性碰撞的结果。低原子量的材料,非弹性碰撞较可能,电子较易穿进材料内部,较少向边侧碰撞,而形成梨子的颈部,当穿透的电子丧失能量变成较低能量时,弹性碰撞较可能,结果电子行进方向偏向侧边而形成较大的梨形区域。
27. 在固定电子能量时,作用体积和原子序成反比,乃因弹性碰撞之截面积和原子序成正比,以致电子较易偏离原来途径而不能深入样品。
28. 电子束能量越大,弹性碰撞截面积越小,电子行走路径倾向直线而可深入样品,作用体积变大。
29. 电子束和样品的作用有两类,一为弹性碰撞,几乎没有损失能量,另一为非弹性碰撞,入射电子束会将部份能量传给样品,而产生二次电子、背向散射电子、俄歇电子、X光、长波电磁放射、电子-空位对等。这些信号可供SEM运用者有二次电子、背向散射电子、X光、阴极发光、吸收电子及电子束引起电流(EBIC) 等。
30. 二次电子(Secondary Electrons):电子束和样品作用,可将传导能带(conduction band)的电子击出,此即为二次电子,其能量约 < 50eV。由于是低能量电子,所以只有在距离样品表面约50~500Å深度范围内所产生之二次电子,才有机会逃离样品表面而被侦测到。由于二次电子产生的数量,会受到样品表面起伏状况影响,所以二次电子影像可以观察出样品表面之形貌特征。
31. 背向散射电子(Backscattered Electrons):入射电子与样品子发生弹性碰撞,而逃离样品表面的高能量电子,其动能等于或略小于入射电子的能量。背向散射电子产生的数量,会因样品元素种类不同而有差异,样品中平均原子序越高的区域,释放出来的背向散射电子越多,背向散射电子影像也就越亮,因此背向散射电子影像有时又称为原子序对比影像。由于背向散射电子产生于距样品表面约5000Å的深度范围内,由于入射电子进入样品内部较深,电子束已被散射开来,因此背向散射电子影像分辨率不及二次电子影像。
32. X光:入射电子和样品进行非弹性碰撞可产生连续X光和特征X光,前者系入射电子减速所放出的连续光谱,形成背景决定*少分析之量,后者系特定能阶间之能量差,可藉以分析成分元素。
33. 电子束引致电流(Electron-beam induced Current , EBIC):当一个p-n接面(Junction)经电子束照射后,会产生过多的电子-空位对,这些载子扩散时被p-n接面的电场收集,外加线路时即会产生电流。
34. 阴极发光(Cathodoluminescence):当电子束产生之电子-空位对再结合时,会放出各种波长电磁波,此为阴极发光(CL),不同材料发出不同颜色之光。
35. 样品电流(Specimen Current):电子束射到样品上时,一部份产生二次电子及背向散射电子,另一部份则留在样品里,当样品接地时即产生样品电流。
36. 电子侦测器有两种,一种是闪烁计数器侦测器(Scintillator),常用于侦测能量较低的二次电子,另一种是固态侦测器(solid state detector),则用于侦测能量较高的反射电子。
37. 影响电子显微镜影像品质的因素:
A. 电子枪的种类:使用场发射、LaB6或钨丝的电子枪。
B. 电磁透镜的**度。
C. 电磁透镜的型式: In-lens ,semi in-lens, off-lens
D. 样品室的洁净度: 避免粉尘、水气、油气等污染。
E. 操作条件: 加速电压、工作电流、仪器调整、样品处理、真空度。
F. 环境因素: 振动、磁场、噪音、接地。
38. 如何做好SEM的影像,一般由样品的种类和所要的结果来决定观察条件,调整适当的加速电压、工作距离 (WD)、适当的样品倾斜,选择适当的侦测器、调整合适的电子束电流。
39. 一般来说,加速电压提高,电子束波长越短,理论上,只考虑电子束直径的大小,加速电压愈大,可得到愈小的聚焦电子束,因而提高分辨率,然而提高加速电压却有一些不可忽视的缺点:
A. 无法看到样品表面的微细结构。
B. 会出现不寻常的边缘效应。
C. 电荷累积的可能性增高。
D. 样品损伤的可能性增高。
因此适当的加速电压调整,才可获得*清晰的影像。
40. 适当的工作距离的选择,可以得到*好的影像。较短的工作距离,电子讯号接收较佳,可以得到较高的分辨率,但是景深缩短。较长的工作距离,分辨率较差,但是影像景深较长,表面起伏较大的样品可得到较均匀清晰的影像。
41. SEM样品若为金属或导电性良好,则表面不需任何处理,可直接观察。若为非导体,则需镀上一层金属膜或碳膜协助样品导电,膜层应均匀无明显特征,以避免干扰样品表面。金属膜较碳膜容易镀,适用于SEM影像观察,通常为Au或Au-Pd合金或Pt。而碳膜较适于X光微区分析,主要是因为碳的原子序低,可以减少X光吸收。
42. SEM样品制备一般原则为:
A. 显露出所欲分析的位置。
B. 表面导电性良好,需能排除电荷。
C. 不得有松动的粉末或碎屑(以避免抽真空时粉末飞扬污染镜柱体)。
D. 需耐热,不得有熔融蒸发的现象。
E. 不能含液状或胶状物质,以免挥发。
F. 非导体表面需镀金(影像观察)或镀碳(成份分析)。
43. 镀导电膜的选择,在放大倍率低于1000倍时,可以镀一层较厚的Au,以提高导电度。放大倍率低于10000倍时,可以镀一层Au来增加导电度。放大倍率低于100000倍时,可以镀一层Pt或Au-Pd合金,在超过100000时,以镀一层超薄的Pt或Cr膜较佳。
44. 电子束与样品作用,当内层电子被击出后,外层电子掉入原子内层电子轨道而放出X光,不同原子序,不同能阶电子所产生的X光各不相同,称为特征X光,分析特征X光,可分析样品元素成份。
45. 分析特征X光的方式,可分析特征X光的能量分布,称为EDS,或分析特征X光的波长,称为WDS。X光能谱的分辨率,在EDS中约有100~200eV的分辨率,在WDS中则有5~10eV的分辨率。由于EDS的分辨率较WDS差,因此在能谱的解析上,较易产生重迭的情形。
46. 由于电子束与样品作用的作用体积(interaction volume)的关系,特征X光的产生和作用体积的大小有关,因此在平面的样品中,EDS或WDS的空间分辨率,受限于作用体积的大小。
相关应用
扫描电镜是一种多功能的仪器、具有很多优越的性能、是用途*为广泛的一种仪器.它可以进行如下基本分析:
1、观察纳米材料:其具有很高的分辨率,可以观察组成材料的颗粒或微晶尺寸在0.1-100nm范围内,在保持表面洁净的条件下加压成型而得到的固体材料。
2、材料断口的分析:其景深大,图象富立体感,具有三维形态,能够从断口形貌呈现材料断裂的本质,在材料断裂原因的分析、事故原因的分析以及工艺合理性的判定等方面是一个强有力的手段。
3、直接观察大试样的原始表面:它能够直接观察直径100mm,高50mm,或更大尺寸的试样,对试样的形状没有任何限制,粗糙表面也能观察,这便免除了制备样品的麻烦,而且能真实观察试样本身物质成分不同的衬度(背散射电子象)。
4、观察厚试样:其在观察厚试样时,能得到高的分辨率和*真实的形貌。
5、观察试样的各个区域的细节:试样在样品室中可动的范围非常大,可以在三度空间内有6个自由度运动(即三度空间平移、三度空间旋转),这对观察不规则形状试样的各个区域带来极大的方便。
6、在大视场、低放大倍数下观察样品,用扫描电镜观察试样的视场大:大视场、低倍数观察样品的形貌对有些领域是很必要的,如刑事侦察和考古。
7、进行从高倍到低倍的连续观察:扫描电镜的放大倍数范围很宽(从5到20万倍连续可调),且一次聚焦好后即可从高倍到低倍、从低倍到高倍连续观察,不用重新聚焦,这对进行分析特别方便。
8、观察生物试样:由于电子照射面发生试样的损伤和污染程度很小,这一点对观察一些生物试样特别重要。
9、进行动态观察:如果在样品室内装有加热、冷却、弯曲、拉伸和离子刻蚀等附件,则可以观察相变、断烈等动态的变化过程。
10、从试样表面形貌获得多方面资料:因为扫描电子象不是同时记录的,它是分解为近百万个逐次依此记录构成的。使得扫描电镜除了观察表面形貌外还能进行成分和元素的分析,以及通过电子通道花样进行结晶学分析,选区尺寸可以从10μm到3μm。
现在扫描电镜已广泛用于材料科学(金属材料、非金属材料、纳米材料)、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害(火灾、失效分析)鉴定、刑事侦察、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等